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Preface

This semi-annual report describes our progress during the
period from September 1990 to February 1991. Two specific tasks
are described and each should be read independently. That is, figure
and reference numbering is consecutive only within the description
of the task. As can be expected the progress reports are very brief
and the reader should refer to the referenced technical reports for
detailed coverage. A total of 23 journal articles, 17 conference
publications and 18 technical reports have been written since the
beginning of the Grant. A complete list of these is given in pp. 40-
45.
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ABSTRACT

Validated results are presented for the new 3D body of revolution finite element-
boundary integral code. As usual, a Fourier Series expansion of the vector electric and
magnetic fields is employed to reduce the dimensionality of the system and the exact
boundary condition is employed to terminate the finite element mesh. The mesh
termination boundary is chosen such that it leads to convolutional boundary operators for
low O(n) memory demand. Improvements of this code are discussed along with the
proposed formulation for a full 3D implementation of the finite element-boundary integral
method in conjunction with a CGFFT solution.

OBIECTIVE

The objective of this task is to develop innovative techniques and related software
for scattering by three dimensional composite structures. The proposed analysis is a hybrid
finite element-boundary integral method formulated to have an O(n) memory demand. This
low storage is achieved by employing the FFT to evaluate all boundary integrals and by
resorting to an iterative solution algorithm. Particular emphasis in this task is the
generation of software applicable to airborne vehicles and the validation of these by
comparison with measured and other reference data. Because the approach is new, a step
by step development procedure has been proposed over a three-year period. During the
first year the technique was developed and implemented for two-dimensional composite
structures. Support software for the two-dimensional analysis such as pre- and post-
processor routines were developed during the second year and a formulation was also
developed and implemented for three-dimensional bodies of revolution. Finally, during the
third year, we will develop, implement, and test the method for arbitrary three dimensional
structures.



BACKGROUND

Interest in three-dimensional (3-D) methods has increased in recent years, however,
the associated demands in computation time and storage are often prohibitive for electrically
large 3-D bodies. Vector and concurrent (i.e. hypercube, connection, etc.) computers are
beginning to alleviate the first of these demands, but a minimization of the storage
requirements is essential for treating large structures.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method [1] -
[4] is one such frequency domain solution approach which requires O(n) storage for the
solution on n equations. This method involves the use of FFTs whose dimension equals
that of the structure under consideration [5] - [7] and, therefore, demands excessive
computation time when used in an iterative algorithm. Also, the standard CGFFT requires
uniform rectangular gridding that unnecessarily includes the impenetrable portions of the
scatterer. With these issues in mind, a new solution approach is proposed for solving
scattering problems. The proposed method will be referred to as the Finite Element-
Conjugate Gradient Fast Fourier Transform (FE-CGFFT) method.

During last year's effort the FE-CGFFT method was developed for two-
dimensional scatterers where the finite element mesh was terminated at a rectangular box.
Inside the box boundaries, Helmholtz equation is solved via the finite element method and
the boundary constraint is obtained by an appropriate integral equation which implicitly
satisfies the radiation condition. Along the parallel sides of the box, this integral becomes a
convolution and is, therefore, amenable to evaluation via the FFT. The dimension of the
required FFT in this hybrid method is one less than the dimensionality of the structure thus,
making it attractive for 3-D simulations. Also, because it incorporates the finite element
method, the FE-CGFFT formulation remains valid regardless of the structure's geometry
and material composition.

The proposed method described in the University of Michigan Report 025921-6-T
(see also [8)) is similar to the moment method version developed by Jin [9]. Jin's method
was in turn based on work published in the early 70's by McDonald and Wexler [10] who
introduced an approach to solve unbounded field problems. The proposed method is also
similar to other methods (a few of which will be mentioned here), neither of which
provides a storage reduction comparable to the proposed FE-CGFFT method. The
unimoment method [11] uses finite elements inside a fictitious circular boundary and an
eigenfunction expansion to represent the field in the external region. The coefficients of the
expansion are then determined by enforcing field continuity at the finite element (FE) mesh
boundary. The coupled finite element-boundary element method [12] uses the finite
element method within the boundary and the boundary element method to provide the



additional constraint at the termination of the mesh. Unlike the proposed method, the
solution in [12] was accomplished by direct matrix inversion (as in [9]), and the outer mesh
boundary is not rectangular to take advantage of the FFT for the evaluation of the boundary
integrals.

PROGRESS

Part of our efforts in this task were devoted to debugging and validating the three
dimensional body of revolution (BOR) code developed in the previous months. The
analysis associated with this code is described in the U of M technical report 025921-18-T
where we also include validation data obtained over the past two months. Some of these
are shown in figures 1-3 and refer to an ogive, a circular cylinder and a sphere.
Unfortunately, it was found that as the bodies became larger the system's condition
deteriorates and this was traced to the pulse basis formulation employed for the
discretization of the boundary. Through several tests we have now shown that A
Galerkin's linear basis formulation will correct the convergence difficulties. For example,
this formulation was already employed in solving large systems (with more than 120,000
unknowns) associated with the scattering by frequency selective surfaces (FSS) and large
Mates. As shown in figure 4-5, the Galerkin's formulation with linear basis permitted a
solution of this system in less than 70 iterations! In comparison, the pulse basis-point
matching formulation would require several thousand iterations before reaching
convergence. Consequently, we are in the process of incorporating the Galerkin's linear
basis formulation into our existing 2D and 3D BOR codes. Further, it was found that the
ech area converges much sooner than the mean square error and permitted us to speed-up
solution time.

During this last quarter we also began the development of the proposed finite
element formulation for general non-symmetric inhomogeneous bodies. The basic discrete
elements in this case are tetrahedra in conjunction with edge-based expansion functions.
The associated finite element formulations is described in Appendix A and we are now in
the process of implementing it. Initially, the finite element mesh will be terminated by a
fictitious absorbing layer whose dielectric parameters were determined by a minimization of
the reflection coefficient over the entire range of incidence angles. For a three layer
coating, each of thickness 0.05 wavelengths, it was found that their respective dielectric
properties to minimize the reflection coefficient over all angles of incidence are



€r1=(-0.1249205, -1.731605), w;1=(-1.031792, -0.1039932)
€r2=(0.040699530, 0.1750280), pr1=(0.3155941, 0.3190330)
€r3=(-1.278644, 0.9625375), pur3=(-0.1721315, -5.389832)

The corresponding plot of the reflection coefficient as a function of incidence is given in
figure 7 along with scattering patterns based on the proposed termination model. As seen,
for the chosen fictitious absorber the reflection coefficient is less than one percent for 6 up
to 62 degrees and less than 2 percent for 0 up to 77 degrees. For the same error criteria,
the corresponding angles associated with the second order Padé ABC are 35 and 41
degrees, respectively. The fictitious ABC has, therefore, a substantially better performance
over the existing ABCs, and its effectiveness will be examined further in the next few
months.

The three dimensional finite element meshes required in the analysis will be
generated by SDRC IDEAS and we have already began to develop the software for
transforming the output of this commercial package to the input files of our analysis codes.
Similar drivers were already developed for the two dimensional code which was developed
last year.

Finally, during this period we performed extensive testing of the two-dimensional
code and have in the progress developed several new pre- and post- processing algorithms
for this code. Two of the new geometries (see fig. 8 and 11) whose scattering was
computed with our 2D finite element - CGFFT code are displayed in figures 9, 11 and 12.
These represent airfoil configurations, one of which is coated with a dielectric material.

CONCLUSIONS

The project continues to evolve in accordance with our original plan and schedule.
Most importantly, so far, our expectation of the finite element CGFFT formulation have
been realized and we are, therefore, pleased with its performance for the intended
applications.

TRANSITIONS

All of our efforts in the next six months will be devoted to the development of the
3D finite element boundary integral code for arbitrary structures. In the immediate future
we will also pursue improvements for our existing codes primarily directed at speeding the
convergence of the CG or BiCG algorithm.
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0.0 300 600 900 1200 1500  180.0

FE/BE (TE)
@  CICERO (TE)

a CICERO (TM)




on? [dB]

o2 [dB)

100 . T . , e
00 }
-10.0 FE/BE (TE)
® CICERO (TE)
200k /N e FE/BE (TM)
] CICERO (TM)
-30.0
-40.0 | :
.50.0 1 —l 1., 1 —l )
0.0 300 600 900 1200 1500 1800
8, [deg] (4,=0, 8,=90)
p=0.1A, 1=1.0A pc cylinder
0.0 1 1 1 d | ]
3 -~—— FEMBE (TE)
-10.0 ® CICERO (TE)
--------- FE/BE (TM)
@  CICERO (TM)
-20.0
-30.0
[ 1 1 . 1 |
-40.0 i

0.0 30.0 60.0 90.0 120.0 150.0 180.0

o, [deg] (4,=0,8,=0)
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(solid line) with an approximate result obtained by truncating the infinite FSS.
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case 2: Coated Trailing Edge
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Figure 8: Geometry and finite element mesh of the illustrated coated trailing edge
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Perfectly conducting airfoil

All dimensions in wavelengths. The airfoil section is made by 5 arcs:
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OA : straight line

AB : circle of radius R2 = T\, and of center 02
BC : polynomial parametric equation

CD : polynomial parametric equation

DO : circle of radius R1 = 914 and of center O1

The polynomial equation are given by:
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Figure 10: Geometry of a PEC Airfoil whose scattering is given in figures 11 & 12.
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Figure 11: E-polarization echowidth for the airfoil given in figure 10.
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Figure 12: H-polarization echowidth for the airfoil given in figure 10.
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Appendix A

Finite element formulation for tetrahedral
elements and edge-based expansion basis

1 Derivation of finite element equations

Let us consider a three dimensional inhomogeneous body occupying the
volume V. In order to discretize the electric field E inside the body, we
subdivide the volume V into a number of small tetrahedra, each occupying
volume V.(e = 1,2, .-, M) with M being the total number of tetrahedral
elements. Within each tetrahedron, the electric field satisfies the vector
wave equation

Vx——VxE—L%,E:O (1)
Hr
where i, is the permeability of the medium, ¢, is the medium permittivity
and k, is the free space wave number. The next step is to expand the
electric field within V, as

6
E=Y E;W; (2)

=1

where W are edge-based vector basis functions and Ef denote the
expansion coeflicients of the basis, all defined within the volume V,. W is
tangential to the jth edge of the eth tetrahedron with zero tangential
component along the other edges of the tetrahedral element. On
substituting (2) into (1), we obtain

6
SO E: (v X —V x W& — ch,W;) =0 3)

i=1 Fr

In order to solve for the unknown expansion coefficients E¢, we take the dot
product of (3) with W¢ and then integrate the resulting equation over the
element volume V, (Galerkin’s technique). The wave equation thus reduces
to

20



6
S E; [ Wi (Vx ﬂlewg—kzeTW§) dv =10 (4)
j=1 e T

The first term in the integral of the above expression can be simplified by
using basic vector identities. Since

Wf.(Vx;l—VXW;) = v-[ui(VxW,%)fo]+#i(Vfo)-(V><W§)

the divergence theorem can be readily applied to (4) resulting in the
following expression:

: —-1 (-] e e
0 = ):I_EJ{/V (u (V x WE) . (V x W¢) — kze,W'.,Wj) .
)= e T
+4 (—: (V x W¢) x Wf) .dS} (5)

where S, denotes the surface enclosing V,. Using vector identities , (5) can
be further simplified to yield the weak form of Maxwell’s equation:

6 1
E: —(VXW) . (VXWE -k W WS | dv = o WE. H)d
JZ—; ’/ve(ur( X Wi) . (V x W5) = koe, W3 J)v Jwﬂf{s, .(n xH)ds
(6)

where n X H is the tangential magnetic field on the exterior dielectric
surface. Equation (6) can be conveniently written in matrix form as

[A][E°] = [B] (7)
where

1 e e e e
Ay = /V (;(V x W) . (V x WE) — kge,w,..wj) v (8)

B = ]w,uoj%; W?.(n x H)ds (9)

On assembling all the M tetrahedral elements that make up the geometry,
we obtain a system of equations whose solution yields the field components
over the entire body. Therefore, summing over all M elements, we have
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M

M
; [47][E] = 3 [B] (10)

which gives )
[A][E] = [B] (11)

where [A] is a N x N matrix with /V being the total number of edges
resulting from the subdivision of the body and [F] is a N x 1 column vector
denoting the edge fields. Due to the continuity of the tangential component
of the magnetic field at the interface between two dielectrics, an element
face lying inside the body does not contribute to [B] since the surface
integrals over the faces of adjacent tetrahedra cancel each other. As a result,
[B] is a column vector containing the tangential magnetic field only over
the exterior surface of the body. Equation ( 11) can therefore be written as

AssEa+AsiEi = Ha
AE,+AGE, = 0 (12)

where the subscript s denotes the edges on the surface and i represents the
edges inside the body. It is thus readily seen that (11) relates the electric
field inside and on the surface of the body to the on-surface tangential
magnetic field.

2 Basis functions

Vector fields within tetrahedral domains in three dimensional space can be
conveniently represented by expansion functions that are linear in the
spatial variables and have either zero divergence or zero curl. The basis
functions defined below are associated with the six edges of the tetrahedron
and have zero divergence and constant curl. Assuming the four nodes and
the six edges of a tetrahedron are numbered according to Table 1, the
vector basis functions associated with the (7 — ¢)th edge of the tetrahedron
are defined as

_ ) fr—i+gr-ixr, rin the tetrahedron
Wri = { 0, otherwise (13)
where: = 1,2,---,6 and f and g are constant vectors. On direct

evaluation, it is readily seen that
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V-W;, = 0 (14)
VXW,‘ = Qg,' (15)

Since the complex scalar E; in ( 2) is the projection of the electric field
onto the jth edge of the tetrahedral element,

W,"Gj' = 6,']' (16)

T on jth edge

where §;; is the Kronecker delta. Solving ( 13) and ( 16) for the unknown
vectors yield[1]

f7_,' = Evl‘,'l X Ty, (17)
bib7-tet
o= = 1
g7 G (18)

where V is the volume of the tetrahedral element, e; = (r;, — r;;)/b; is the
unit vector of the ith edge and b; = |r;, — r;, | is the length of the ith edge.
All distances are measured with respect to the origin.

Since there are two numbering systems, local and global, a unique global
direction is defined (e.g., always pointing from the smaller node number to
the larger node number) to ensure the continuity of n X E across all edges.
This implies that ( 13) should be multiplied by (-1) if the local edge vector
(as defined in Table 1) does not have the same direction as the global edge
direction. Even though W, forces no conditions on the normal component
of E, it has been shown[2] that the continuity of electric flux can be satisfied
within the degree of approximation with the above formulation. Finally,
since V- W, = 0 the electric field obtained through ( 2) exactly satisfies the
divergence equation within the element, i.e. V- E = 0. Therefore, the finite
element solution is free from contamination of spurious solutions[2].

3 Mesh termination

Differential equation methods, such as finite elements, can only solve
boundary value problems. Since electromagnetic problems are open
boundary-infinite domain types, a means to truncate the solution domain
to lie within a finite boundary must be found. On this boundary, a
condition is enforced thus ensuring that the fields will obey the Sommerfeld
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radiation condition at distances asymptotically far from the object. These
absorbing boundary conditions (ABCs) have a significant advantage over
the global methods of solving unbounded problems using finite elements in
that they are local in nature. Due to this, the sparse matrix structure of
the finite element formulation is retained. One disadvantage, however, is
that ABCs are approximate and do not model the exterior field exactly.
The objective of absorbing boundary conditions is to truncate the finite
element mesh with boundary conditions that cause minimum reflections of
an outgoing wave. These ABCs should provide small, acceptable errors
while minimising the distance from the object of interest to the outer
boundary. This minimal distance is required to reduce the number of
unknowns in the problem for computational efficiency. A three dimensional
vector boundary condition will be investigated here for terminating the
finite element mesh of the body described in section 1.1. We begin with the
Wilcox representation[3] of the electric field which has an expansion

e I 2 Aq(6,¢
B(r)= S 2:09) (19)
n=0
From ( 19), we get
1 oA 1+D1 C_jkr i nAnt
VxE:{]er - }E— — > = (20)

n=1

where A,; = 7 X A, is the transverse component of A, and, for a vector F,
D, F is given by

1 o, . s OF.
DiF = 50 [aa(“"‘”’ )—W]"
1 BF' . ¢ ~ o 6Ff ~
wind [ 5 — sinfF ] 0+ [F ~ 5% ] é (21)

Using the recursion relation

—'2]k’l’lAnt = n(n - I)An—l,t + D4An_1

where
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DiA, = (DAS+DyA,)0+ (D AL+ DyA,)d

OA7, 1 ., 2cosf0A?

0 sin?0 " sin?0 06

2 0A] 1 4, 2cosf DAS

sinf d¢  sin?20 " sin? 0¢

and D is Beltrami’s operator[3], we can derive the representation correct to

r~4. Applying the recursion relation in ( 20) yields the desired relationship
for the vector ABC:

DyA, = 2

Dy A,

VxE = a(r)E+ 3(r)D,E (22)

where
a(r) = jk{%— (1+3.—’1C-;) fx} (23)
Br) = s (24)

27kr? (14 1/5kr)

The ABC formulated above is applicable to spherical boundaries and hence
would be storage intensive and numerically inefficient when used to
terminate the mesh of long and thin geometries. It would be highly
desirable to choose an outer boundary that conforms to the shape of the
object. An approximate boundary condition based on the asymptotic
representation of fields for a two dimensional scalar problem has already
been derived[4]. It is the author’s intention to extend the derivation of the
two dimensional scalar boundary condition to a three dimensional vector
absorbing boundary condition for an arbitrary outer boundary.

4 Solution of the finite element equations

An inspection of ( 11) reveals that for an inhomogeneous body, there is no
a priori information about the tangential magnetic field over the exterior
surface of the body. Relation ( 11) therefore contains two unknown vectors,
[E] and [B], and thus another condition is required involving the two
variables to permit an evaluation of the fields inside and on the surface of
the body. This condition relating the tangential electric field to the
tangential magnetic field on the surface is provided by ( 22). Since the
ABC in ( 22) refers to the scattered field, we can rewrite it as

25



VxE! = af)E!+A(r)DE:

H® = ;]l-l-[a(r)Ej-i-ﬂ(")D‘iE:]
= KE! (25)

where K = w-l-u [a(r) + B(r)D,) and the subscript s denotes the field on the
surface and the superscript s represents the scattered field. Since the total
field is a sum of the incident field and the scattered field, therefore from

( 25), we obtain

H! = KE!
H,-H™ = K(E,-E) (26)

Substituting ( 26) into ( 12) and simplifying gives

(A —K)E, + ALE; = Hi’w — }CEi"C
AE,+AGE;, = 0 (27)

The above equation can thus be solved for the unknown electric fields both
inside and on the surface of the body.

5 References for Appendix A

1. M.L. Barton and Z.J. Cendes, “New vector finite elements for
three-dimensional magnetic field computation”, J. Appl. Phys., vol.61, no.8,
pp-3919-21, April 1987.

2. X. Yuan, “On the use of divergenceless basis functions in finite
elements”, submitted to Electron. Lett.

3. C.H. Wilcox, “An expansion theorem for electromagnetic fields”,
Comm. Pure Appl. Math., vol. 9, pp. 115-134, May 1956.

4. A. Khebir, O.M. Ramahi and R. Mittra, “An efficient partial
differential equation method to solve complex shape scatterers”, to appear.
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ABSTRACT

Rigorous UTD (uniform Geometrical Theory of Diffraction) diffraction coefficients
are presented for a coated convex cylinder simulated with generalized impedance boundary
conditions. In particular, ray solutions are obtained which remain valid in the transition
region and reduce uniformly to those in the deep lit and shadow regions. These involve
new transition functions in place of the usual Fock-type integrals, characteristic to the
impedance cylinder. A uniform asymptotic solution is also presented for observations in
the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex
cylinder are obtained via a generalization of the corresponding ones for the circular

cylinder.

OBJECTIVE

This task involves the use of higher order boundary conditions to generate new
solutions in diffraction theory. In particular, diffraction coefficients will be developed for
dielectric/magnetic layers and metal-dielectric junctions which are often encountered on
airborne vehicles as terminations of coatings and conformal antennas. Solutions for both
polarizations will be developed for fairly thick junctions and versatile computer codes will
be written and tested. Creeping wave diffraction coefficients will be also developed for
multilayered coated cylinders.
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PROGRESS
1. Introduction

The problem of scattering by a smooth convex impedance cylinder has received
much attention. Wang [1, 2] presented ray-optical solutions for the impedance and coated
cylinders. His results are valid only in the deep lit and shadow regions and do not apply to
the case where the observation point is in the transition region. Wait and Conda [3, 4]
developed a solution which is valid in the transition region and for observation points on
and off the surface. However, as pointed out by Pathak [5] it did not uniformly reduce to
the ray solution [6, 7] exterior to the transition regions. Also, it is not valid on the portion
of the surface in the transition region and these limitations were the primary motivation in
Pathak's work [5] for the perfectly conducting convex cylinder. Recently, Kim and Wang
[8] presented a solution applicable to a coated cylinder that remained valid in the transition
region. They employed a heuristic approach to obtain the numerical values of the resulting
transition integral applicable to a coated cylinder. Their solution is uniform but is not
applicable to the close vicinity of the cylinder.

Here we develop a rigorous UTD solution of the diffraction by a coated cylinder
simulated with generalized impedance boundary conditions. In addition, a uniform
asymptotic solution is obtained which remains valid when the observation point is in close
vicinity of the cylinder. An important aspect of the paper is also the use of second order
generalized impedance boundary conditions (GIBC) for the simulation of the coating.
Their derivation has already been given in [9] and [10] and are characterized by the
inclusion of higher order field derivatives in their definition. Because of this they are less
local which leads to an improved simulation (with respect to the standard impedance
boundary condition - SIBC) of the coating in a manner analogous to the order of the
highest derivative kept in the condition. Recently, they were successfully applied to a
number of diffraction problems [11], [12] and have also been used in numerical
simulations of multilayer coatings (see fig. 1) [13]. These applications provided a measure
of the accuracy of the proposed GIBC and in particular accuracy criteria were derived in
[13] for the second order conditions as a function of coating thickness and composition.

The UTD solution to be presented here parallels that given by Pathak [5] for the
circular perfectly conducting cylinder. However, in the case of the coated cylinder the
resulting UTD expressions are in terms of Fock-type integrals whose efficient evaluation is
of primary interest. In the following we first present the eigenfunction solution based on
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the second order GIBC simulation of a circular coated cylinder. By employing Watson's
transformation this is written in integral form which is then cast in a ray representation.
They ray solution is subsequently generalized to the case of a general convex cylinder.
Finally, the evaluation of the Fock-type integrals is discussed and some results are
presented which validate the accuracy of the GIBC eigenfunction and ray solutions. In the
process, we demonstrate the improved accuracy of the GIBC solution over the
corresponding SIBC solution, and it is also shown how the presented UTD solution can be
extended to treat multilayered coated cylinders.

The details of the analysis are described in the report 025921-13-T which was
recently submitted to the sponsor. Below we only attach a few results which demonstrate
the accuracy and utility of the derived formulae.

2. Numerical Results

The UTD expressions derived in the UM report 025921-17-T provide a complete
set of equations for the computation of the total field in all regions of interest. Below, we
present some calculated data which validate the accuracy of the derived expressions by
comparison with data based on the moment method and eigenfunction solutions.

In figure 2 the eigenfunction solutions based on the GIBC and SIBC simulations
are compared with the exact for a coated cylinder and this clearly demonstrates the
improved simulation (with respect to the standard impedance boundary conditions - SIBC)
achieved with the second order GIBC. To show the validity of the UTD solution in the
case of the convex cylinder, a special case of an elliptical cylinder is considered in figure 3.
Data based on the moment method are compared with those obtained from the UTD
solution in conjunction with the second order low and high contrast boundary conditions.

Figure 4 verifies the asymptotic solution developed for the field point in the close
vicinity of a convex cylinder. We remark, however, that the approximations used for the
Hankel functions in the derivation of (42) and (43) become less accurate for some values of
€r and W associated with lossless coatings, and this can be avoided by using more accurate
approximations for the Hankel functions. Finally, figure 5 demonstrates the use of GIBC
in simulating multilayer coatings by simply redefining the material constants am and an,' as
discussed in [10, 13].

A difficulty in implementing the expressions derived in this paper was the
evaluation of the Fock-type integrals G(x,q), g7 (D) and g2(D) as well as determination of
the zeros corresponding to (21). The Fock-type integrals were evaluated by employing the

31



method described in [16] and the zeros of (21) were determined using the routine given in
[20].

Summary

Rigorous ray solutions of the scattered fields were presented for a coated convex
cylinder. These were developed in the context of the uniform geometrical theory of
diffraction and specific expressions were given for the scattered fields in the lit, shadow
and transition regions as well as for observations in the near vicinity of the cylinder. That
is, UTD expressions were derived for all regions exterior to the coated cylinder. These are
suited for engineering computations and are given in terms of the generalized Pekeris or
Fock-type functions whose evaluation was efficiently performed via the Fourier
Trapezoidal rule suggested by Pearson [16].

In comparison to the solution given by Kim and Wang [8], the ray representations
given here are based on a second order generalized impedance boundary condition which
permits the simulation of thin multilayered coating as demonstrated in the included
examples. Also, in our implementation of the transition fields we employed a rigorous
rather than a heuristic evaluation of the Fock-type integrals. Further, we have presented
accurate field representations for observations on or near the vicinity of the coated cylinder
and these can also be used for computing the radiated fields by a source or an aperture on
the surface of the convex cylinder.
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